Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg - de Vries equation in the small dispersion limit
نویسنده
چکیده
Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg-de Vries equation in the small dispersion limit Abstract In the small dispersion limit, solutions to the Korteweg-de Vries equation develop an interval of fast oscillations after a certain time. We obtain a universal asymptotic expansion for the Korteweg-de Vries solution near the leading edge of the oscillatory zone up to second order corrections. This expansion involves the Hastings-McLeod solution of the Painlevé II equation. We prove our results using the Riemann-Hilbert approach.
منابع مشابه
Numerical Study of a Multiscale Expansion of the Korteweg De Vries Equation and Painlevé-ii Equation
The Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion of order ǫ, ǫ ≪ 1, is characterized by the appearance of a zone of rapid modulated oscillations. These oscillations are approximately described by the elliptic solution of KdV where the amplitude, wave-number and frequency are not constant but evolve according to the Whitham equations. Whereas the difference betwe...
متن کاملNumerical Study of a Multiscale Expansion of the Korteweg De Vries Equation
ABSTRACT. The Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion of order ǫ, ǫ ≪ 1, is characterized by the appearance of a zone of rapid modulated oscillations. These oscillations are approximately described by the elliptic solution of KdV where the amplitude, wave-number and frequency are not constant but evolve according to the Whitham equations. Whereas the differ...
متن کاملSolitonic Asymptotics for the Korteweg-de Vries Equation in the Small Dispersion Limit
We study the small dispersion limit for the Korteweg-de Vries (KdV) equation ut + 6uux + ǫ uxxx = 0 in a critical scaling regime where x approaches the trailing edge of the region where the KdV solution shows oscillatory behavior. Using the Riemann-Hilbert approach, we obtain an asymptotic expansion for the KdV solution in a double scaling limit, which shows that the oscillations degenerate to ...
متن کاملForced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کامل